
Giuseppe	Augiero	
<talk@augiero.it>	-	@GiuseppeAugiero	

Luca	Deri		
<deri@ntop.org>	-	@lucaderi

NtopNg	e	il	monitoraggio	del	
traffico	di	rete		
(in	high-speed	network)

(c)	Ntop.org	-	19	agosto	2016	-	Moca	2016	-	Pescara		-	Parco	ex	Caserma	Cocco



Outlook
•What	are	the	main	activities	of	ntop.org	?	
•Ntop’s	view	on	network	monitoring.	
•From	ntop	to	ntopng.	
•Ntopng	architecture	and	design.	
•Ntopng	as	a	flow	collector	
•Exploring	system	activities	using	ntopng	
•Using	ntopng.	
•Advanced	monitoring	with	ntopng.	
•Future	roadmap	items.



About	ntop.org	[1/2]
•Ntop	develops	of	open	source	network	traffic	monitoring	
applications.		
•Ntop	 (circa	1998)	 is	 the	 first	 app	we	 released	and	 it	 is	 a	
web-based	network	monitoring	application.	
•Today	 our	 products	 range	 from	 traffic	 monitoring,	 high-
speed	 packet	 processing,	 deep-packet	 inspection,	 and	
IDS/IPS	acceleration	(snort	and	suricata).



About	ntop.org	[2/2]
Our software is powering many commercial products...



Ntop	Goals
•Provide	 better,	 yet	 price	 effective,	 traffic	 monitoring	
solution	 by	 enabling	 users	 to	 have	 increased	 traffic	
visibility.	
•Go	beyond	standard	metrics	and	 increase	 traffic	visibility	
by	analysing	key	protocols	in	detail.	
•Provide	users	comprehensive	and	accurate	traffic	reports	
able	to	offer	at	a	fraction	of	price	what	many	commercial	
products	do	together.	
•Promote	open-source	software,	while	protecting	selected	
IPRs.



Ntop’s	Approach	to	Traffic	Monitoring
•Ability	to	capture,	process	and	(optionally)	transmit	traffic	
at	line	rate,	any	packet	size.	
•Leverage	 on	 modern	 multi-core/NUMA	 architectures	 in	
order	to	promote	scalability.	
•Use	commodity	hardware	for	producing	affordable,	 long-
living	(no	vendor	lock),	scalable	(use	new	hardware	by	the	
time	it	is	becoming	available)	monitoring	solutions.	
•Use	 open-source	 to	 spread	 the	 software,	 and	 let	 the	
community	test	it	on	unchartered	places.



Some	History
• In	1998,	the	original 
ntop	has	been	created.	
• It	was	a	C-based	app 
embedding	a	web	server 
able	to	capture	traffic 
and	analyse	it.	
•Contrary	to	many	tools	available	at	that	time,	ntop	used	a	
web	GUI	to	report	traffic	activities.	
• It	is	available	for	Unix	and	Windows	under	GPL.



Ntop	Architecture

HTTP/HTTPS RRD Cisco NetFlow
InMon sFlow



Why	was	Ntop	obsolete?
• Its	 original	 LAN-oriented	 design	 prevented	 ntop	 from	
handling	more	than	a	few	hundred	Mbit.		
•The	GUI	was	 an	old	 (no	 fancy	HTML	5)	monolithic	 piece	
written	 in	 C	 so	 changing/extending	 a	 page	 required	 a	
programmer.	
•Ntop	could	not	be	used	as	web-less	monitoring	engine	to	
be	integrated	with	other	apps.	
•Many	components	were	designed	in	1998,	and	it	was	time	
to	start	over	(spaghetti	code).



Ntopng	Design	Goals
•Clean	separation	between	the	monitoring	engine	and	the	
reporting	facilities.	
•Robust,	crash-free	engine	(ntop	was	not	really	so).	
•Platform	 scriptability	 for	 enabling	 extensions	 or	 changes	
at	runtime	without	restart.	
•Realtime:	most	monitoring	 tools	 aggregate	 data	 (5	mins	
usually)	and	present	it	when	it’s	too	late.	
•Many	new	features	including	HTML	5-based	dynamic	GUI,	
categorisation,	DPI.



Ntopng	Architecture
•Three	 different	 and	 self-contained	 components,	
communicating	with	clean	API	calls.

Users

HTTP
Lua-based Web Reports

nDPI-based C++ 
Monitoring Engine 

PF_RING Kernel Module 
and Drivers

Internet
Traffic

Lua API Calls

PF_RING C API Calls(Linux) Kernel

Data Cache



Network	Traffic	&	Probe
•Where	to	place	the	probe?	
•Near	the	router?	

•And	the	Network	Edge?	

•Probe:	
•Passive	(only	analysis).	
•Active	(analysis	and	block).



Network	measures
•Quantitative:	
•Top	Talkers.	
•Protocols	or	applications.	
•Destinations.	
•Host	counters.	

•Qualitative:	
•Traffic	not	allowed.	
•Errors.



Some	problems
•Security	issues	
•All	the	network	traffic	 is	captured	and	not	just	the	one	
sent	to	the	sniffing	host.	
• If	there	is	a	switched	network	it	is	captured	only	a	part	
of	traffic.	
•Usability	limited	to	those	who	have	root	capabilities.	

• 	Performance	
•Sniffer	 implies	 also	 the	 cpu	 load	 because	 all	 the	
captured	packets	must	be	analysed	by	the	program	and	
not	just	those	directed	to	the	host.



Traffic	mirror
•Hardware:	
• 	Hub	(Copper	Ethernet).	
•Optical	Splitter	(Optical	Fibers).	
•Tap	(Copper/Fiber).	

•Software:	
•Switch	Port	Mirror	(1:1,	1:N).	
•Switch	VLAN	Mirror	(N:1).	
•Switch	Traffic	Filter/Mirroring	(Packet	Brokers).



Network	Taps



Ntopng	Monitoring	Engine
•Coded	 in	 C++	 and	 based	 the	 concept	 of	 flow	 (set	 of	
packets	with	the	same	6-tuple).	
•Flows	 are	 inspected	 with	 a	 home-grown	 DPI-library	
named	 nDPI	 aiming	 to	 discover	 the	 “real”	 application	
protocol	(no	ports	are	used).	
• Information	is	clustered	per:	

• (Capture)	Network	Device	
• Flow	
•Host



Local	vs	Remote	Hosts	[1/2]
• Ntopng	 keeps	 information	 in	memory	 at	 different	 level	 of	
accuracy	 in	order	 to	 save	 resources	 for	hosts	 that	 are	not	
“too	relevant”.	
• For	this	reason	at	startup	hosts	are	divided	in:	
• Local	hosts 
The	local	host	where	ntopng	is	running	as	well	the	hosts	
belonging	to	some	“privileged”	IPv4/v6	networks.	These	
hosts	 are	 very	 relevant	 and	 thus	 ntopng	 keep	 full	
statistics.	
• Remote	hosts 
Non-local	 hosts	 for	which	we	 keep	 a	minimum	 level	 of	
detail.



Local	vs	Remote	Hosts	[2/2]
• For	 local	hosts	 (unless	disabled	via	preferences)	are	kept	
all	L7	protocol	statistics,	as	well	basic	statistics	(e.g.	bytes/
packets	in/out).	
• No	persistent	statistics	are	saved	on	disk.			
• A	system	host	is	the	host	where	ntopng	is	running	and	it	
is	automatically	considered	 local	as	well	 the	networks	of	
its	ethernet	interfaces.



Information	Lifecycle
• Ntopng	 keeps	 in	memory	 live	 information	 such	 as	 flows	
and	hosts	statistics.		
• As	the	memory	cannot	be	infinite,	periodically	non-recent	
information	is	harvested.	
• Users	can	specify	preferences	for	data	purge:



Packet	Processing	Journey
1.Packet	capture:	PF_RING	(Linux)	or	libpcap.	
2.Packet	decoding:	no	IP	traffic	is	accounted.	
3.IPv4/v6	Traffic	only:	
1.Map	the	packet	to	a	6-tuple	flow	and	increment	stats.	
2.Identify	source/destination	hosts	and	increment	stats.	
3.Use	nDPI	to	identify	the	flow	application	protocol	
1.UDP	flows	are	identified	in	no	more	than	2	packets.	
2.TCP	 Flows	 can	 be	 identified	 in	 up	 to	 15	 packets	 in	
total,	otherwise	the	flow	is	marked	as	“Unknown”.	

4.Move	to	the	next	packet.



PF_RING	[1/2]
• In	2004	we	realised	the	the	Linux	kernel	was	not	efficient	
enough	 to	 fulfil	 our	 packet	 capture	 requirements	 and	
thus	 we	 have	 written	 a	 in-kernel	 circular	 buffer	 named	
PF_RING.

Read
Index

Write
Index

Incoming Packets

Outgoing Packets Userspace

Kernel

Socket
(ring)

Network
Adapter

mmap()

Socket
(ring)

PF_RING

Application A Application Z



PF_RING	[2/2]
It	 creates	 a	 straight	 path	 for	 incoming	 packets	 accessed	 from	
user-space	applications	with	memory	mapping.	
No	need	to	use	custom	network	cards:	any	card	is	supported.	
Transparent	 to	 applications:	 legacy	 applications	 need	 to	 be	
recompiled	in	order	to	use	it	(pcap-over-PF_RING).	
Developers	familiar	with	network	applications	can	immediately	
take	advantage	of	it	without	having	to	learn	new	APIs.	
Acceleration	 support	 for	 many	 popular	 open-source	
applications	including	Wireshark,	Suricata	and	Snort.



Balancing	Traffic	with	PF_RING
• At	high	speed	on	modern	multi-core	systems,	it	is	a	good	
idea	 to	 improve	 the	 overall	 system	 performance	 by	
balancing	traffic	across	cores.	

• PF_RING	shares	ingress 
packets	across	multiple  
consumer	applications 
(e.g.	ntopng)	by	hashing 
them	(tunnels	are	supported) 
so	 that	 they	 are	 balanced	 to	 multiple	 consumer	
applications	via	virtual	PF_RING	network	interfaces.

Clustered
PF_RING
Socket

Application Application Application Application

Clustered
PF_RING
Socket

Clustered
PF_RING
Socket

Clustered
PF_RING
Socket

PF_RING



Moving	towards	10	Gbit	and	above	[1/2]
• The	original	PF_RING	is	a	good	solution	up	to	3/5	Gbit	but	
not	 above	 as	 the	 cost	 of	 packet	 copy	 into	 the	 ring	 is	
overkilling.	
• PF_RING	ZC	(Zero	Copy)	is  
an	extension	that	allows	packets 
to	be	received/transmitted 
in	zero	copy	similar	to	what 
FPGA-accelerated	cards	(e.g. 
Napatech)	do	in	hardware.

Device Driver

Application

DMA

Accelerated
Cards

Userland

Kernel

NIC
Memory

Map FPGA

Application
Polling



Moving	towards	10	Gbit	and	above	[2/2]
• In	 ZC	 a	 packet	 is	 put	 by	 the	 ingress	 NIC	 into	 a	 shared	
memory	buffer,	and	it	hop	across	applications	(and	VMs)	
by	exchanging	the	buffer	pointer	(packets	don’t	move).	

• Thanks	 to	 this	 solution	 it	 is	 possible	 to	 create	 arbitrary	
packet	 processing	 topologies	 at	 multi-10	 Gbit	 line	 rate	
using	commodity	hardware	x86	servers	and	adapters	(ZC	
natively	supports	Intel	ethernet	adapters).



PF_RING	ZC	Network	Topologies	[1/2]

1/10G

Core 0 Core 1 Core 2 Core 3

 Linux

1/10G

PF_RING 
ZC

Customer
App C

PF_RING 
ZC

Customer
App D

PF_RING 

ZC

Customer
App

PF_RING 

ZC

Customer
App B

PF_RING/pcap-
based Application 

(e.g. ntopng)

Balancer

Use	Case:	
Load	balancing	across	ntopng	applications.

Zero Copy



PF_RING	ZC	Network	Topologies	[2/2]

Core 0 Core 1 Core 2 Core 3

 Linux

KVM

PF_RING 
ZC

Customer
App C

KVM

PF_RING 
ZC

Customer
App B

PF_RING 
ZC

Customer
App

1/10G

PF_RING 
ZC

Customer
App

1/10G
Use	Case:	
Application	pipeline	or	run	multiple	apps	(e.g.	ntopng)	in	VMs	to	insulate	
them.



PF_RING	(ZC)	and	ntopng
• Using	PF_RING	(ZC)	with	ntopng	has	several	benefits:	
• Ntopng	 can	 scale	 to	 10	 Gbit	 and	 above	 by	 spawning	
several	ntopng	instances	each	bound	to	a	(few)	core(s).	
• It	is	possible	to	send	the	same	packet	to	multiple	apps.	
For	 instance	 it	 is	 possible	 to	 send	 the	 same	packet	 to	
ntopng	 (for	 accounting	 purposes)	 and	 n2disk	 (ntop’s	
application	 for	 dumping	 packet-to-disk	 at	 multi-10G)	
and/or	and	IDS	(e.g.	Suricata	and	snort).



The	need	for	DPI	in	Monitoring	[1/2]
•Limit	traffic	analysis	at	packet	header	level	it	 is	no	longer	
enough	(nor	cool).	
•Network	 administrators	 want	 to	 know	 the	 real	 protocol	
without	relying	on	the	port	being	used.	
•Selected	 protocols	 can	 be	 “precisely	 dissected”	 (e.g.	
HTTP)	 in	order	 to	extract	 information,	but	on	 the	 rest	of	
the	 traffic	 it	 is	 necessary	 to	 tell	 network	 administrators	
what	is	the	protocol	flowing	in	their	network.



The	need	for	DPI	in	Monitoring	[2/2]
• DPI	(Deep	Packet	Inspection)	is	a	technique	for	inspecting	the	
packet	 payload	 for	 the	 purpose	 of	 extracting	 metadata	 (e.g.	
protocol).	
• There	are	many	DPI	toolkits	available	but	they	are	not	what	we	
looked	for	as:	
• They	are	proprietary	(you	need	to	sign	an	NDA	to	use	them),	and	costly	
for	both	purchase	and	maintenance.	
• Adding	a	new	protocol	 requires	 vendor	 support	 (i.e.	 it	 has	 a	high	 cost	
and	might	need	time	until	the	vendor	supports	it)	=	you’re	locked-in.	

• On	 a	 nutshell	 DPI	 is	 a	 requirement	 but	 the	market	 does	 not	
offer	an	alternative	for	open-source.



Say	hello	to	nDPI
•Ntop	has	decided	to	develop	its	own	GPL	DPI  
toolkit	in	order	to	build	an	open	DPI	layer	for	ntop	and	
third	party	applications.	
•Supported	protocols	(>	220)	include:	
•P2P	(Skype,	BitTorrent)	
•Messaging	(Viber,	Whatsapp,	MSN,	The	Facebook)	
•Multimedia	(YouTube,	Last.gm,	iTunes)	
•Conferencing	(Webex,	CitrixOnLine)	
•Streaming	(Zattoo,	Icecast,	Shoutcast,	Netflix)	
•Business	(VNC,	RDP,	Citrix,	*SQL) 



nDPI	Overview
• Portable	C	library	(Win	and	Unix,	32/64	bit).	
• Designed	for	user	and	kernel	space	
• Linux	ndpi-netfilter	implements	L7	kernel	filters	

• Used	by	many	non-ntop	projects	(eg.	xplico.org)	and	part	
of	Linux	distributions	(e.g.	Debian).	
• Able	 to	 operate	 on	 both	 plain	 ethernet	 traffic	 and	
encapsulated	(e.g.	GTP,	GRE…).	
• Ability	 to	 specify	 at	 runtime	 custom	 protocols	 (port	 or	
hostname	-	dns,	http,	https	-based).



nDPI	API
• The	nDPI	API	is	pretty	simple	

• ndpi_init_detection_module()  
ndpi_exit_detection_module()  
Init/term	the	nDPI	library.	

� ndpi_load_protocols()  
Load	custom	protocol	definitions.	
• ndpi_detection_process_packet()  
Process	the	packet	in	nDPI	and	return	the	L7	protocol	
or	NDPI_UNKNOWN	(too	early	or	detection	failed).	

• ndpi_guess_protocol()  
Guess	a	L7	protocols	when	DPI	fails.



nDPI	on	ntopng
• In	ntopng	all	flows	are	analysed	through	nDPI	to	associate	
an	application	protocol	to	them.	
• L7	 statistics	 are	 available	 per	 flow,	 host,	 and	 interface	
(from	which	monitoring	data	is	received).	
• For	network	interfaces	and	local	hosts,	nDPI	statistics	are	
saved	persistently	to	disk	(in	RRD	format).



nDPI	on	ntopng:	Interface	Report	[1/2]



nDPI	on	ntopng:	Interface	Report	[2/2]

Live data scrolling



Ntopng	and	Redis	[1/2]
•Redis	is	an	open	source	key-value	in-memory	database.	
•Ntopng	uses	it	to	cache	data	such	as:	
•Configuration	and	user	preferences	information.	
•DNS	name	resolution	(numeric	to	symbolic).	
•Volat i l e	 mon i tor ing	 data	 (e . g .	 hosts	 JSON	
representation).	

•Some	 information	 is	 persistent	 (e.g.	 preferences)	 and	
some	 is	 volatile:	 ntopng	 can	 tell	 redis	 how	 long	 a	 given	
value	must	be	kept	in	cache.



Ntopng	and	Redis	[2/2]
• Redis	 is	 also	 used	 as	 a	 (persistent)	 queue	 for	 requests	
towards	external	applications.	
• If	configured	(-F	command	line	option),	periodically	flow	
status	is	saved	onto	a	redis	queue,	requests	are	packed,	
and	send	to	a	remote	BigData	system. 

• In	 essence	 Redis	 is	 used	 by	 ntopng	 to	 store	 information	
that	 might	 take	 too	 much	 memory	 (if	 kept	 on	 ntopng	
memory	 space),	 or	 to	 pile	 up	 list	 of	 things	 that	 are	
executed	 periodically	 or	 that	 require	 interaction	 with	
remote	 applications	 that	 might	 be	 slow	 or	 temporary	
unavailable.	



Lua-based	Ntopng	Scriptability	[1/3]
•A	 design	 principle	 of	 Ntopng	 has	 been	 the	 clean	
separation	 of	 the	 GUI	 from	 engine	 (in	 ntop	 it	 was	 all	
mixed).	
•This	means	 that	ntopng	 can	 (also)	be	used	 (via	HTTP)	 to	
feed	 data	 into	 third	 party	 apps	 such	 as	 Nagios	 or	
OpenNMS.	
•All	data	export	from	the	engine	happens	via	Lua.	
•Lua	 methods	 invoke	 the	 ntopng	 C++	 API	 in	 order	 to	
interact	with	the	monitoring	engine.



Lua-based	ntopng	Scriptability	[2/3]
•/scripts/callback/  
scripts	are	executed 
periodically	to	perform 
specific	actions.	
•/scripts/lua/ scripts 
are	executed	only	by	the  
web	GUI.	

•Example: 
http://ntopng:3000/lua/flow_stats.lua 

http://ntopng:3000/lua/about,lua


Lua-based	ntopng	Scriptability	[3/3]
•ntopng	defines	(in	C++)	two	Lua	classes:	
•interface 
•Hook	to	objects	that	describe	flows	and	hosts.	
• Access	to	live	monitoring	data.	

•ntop 
•General	 functions	 used	 to	 interact	 with	 ntopng	
configuration.	

•Lua	objects	are	usually	in	“read-only”	mode	
•C++	sets	their	data,	Lua	reads	data	(e.g.	host.name).	
•Some	Lua	methods	(e.g.	interface.restoreHost())	can	however	
modify	the	information	stored	in	the	engine.



Ntopng	as	a	NetFlow/sFlow	Collector	[1/3]
• The	 “old”	 ntop	 included	 a	 NetFlow/sFlow	 collector.	
Considered	the	effort	required	to	support	all	 the	various	
NetFlow	 dialects	 (e.g.	 Cisco	 ASA	 flows	 are	 not	 “really”	
flows),	in	Ntopng	we	have	made	a	different	design	choice.	



Ntopng	as	a	NetFlow/sFlow	Collector	[2/3]
• nProbe	(a	home-grown	NetFlow/sFlow	collector/probe)	is	
responsible	 for	 collecting/generating	 flows	 and	 convert	
them	to	JSON	so	that	ntopng	can	understand	it.	
• The	 communication	 ntopng	 <->	 nProbe	 is	 over	 ØMQ	 a	
simple/fast	messaging	 system	 that	 allows	 the	 two	peers	
to	be	decoupled	while:	
• Avoiding	“fat”	communication	protocols	such	as	HTTP.	
• Relying	 on	 a	 system	 that	 works	 per	 message	 (no	 per	
packet)	 and	 handles	 automatic	 reconnection	 if	
necessary.



Ntopng	as	a	NetFlow/sFlow	Collector	[3/3]
Flows	are	sent	in	the	following	format	(gzip+encryption)	
• {“8”:"192.12.193.11","12":"192.168.1.92","15":"0.0.0.0","10":0,"14":0,"2":5,"1":
406,"22":1412183096,"21":1412183096,"7":3000,"11":55174,"6":27,"4":6,"5":0,"16":
2597,"17":0,"9":0,"13":0,"42":4}	

• Where:	

• “<Element	ID>”:	<value>	(example	8	=	IPV4_SRC_ADDR)	

• Contrary	 to	 what	 happens	 in	 NetFlow/sFlow	 ntopng	
(collector)	 connects	 to	 nProbe	 (probe)	 and	 fetches	 the	
emitted	 flows.	 Multiple	 collectors	 can	 connect	 to	 the	
same	 probe.	 No	 traffic	 is	 created	 when	 no	 collector	 is	
attached	to	the	probe.



Flow	Collection	Setup:	an	Example
Flow collection/generation (nProbe)
•Probe mode 

nprobe --zmq "tcp://*:5556" -i eth1 -n none
•sFlow/NetFlow collector mode 

nprobe --zmq "tcp://*:5556" -i none -n 
none --collector-port 2055

Data Collector (ntopng)
•ntopng -i tcp://127.0.0.1:5556

tcp://127.0.0.1:5556


Flow	Collection:	Pull	vs	Poll	Mode
• Poll	Mode	
• host	 X>	 ntopng	 -i	 "tcp://Y:1234"	 --zmq-encrypt-pwd	
myencryptionkey	
• host	 Y>	 nprobe	 -n	 none	 --zmq	 "tcp://*:1234"	 --zmq-
encrypt-pwd	myencryptionkey	

• Push	Mode	
• host	X>	ntopng	-i	"tcp://Y:1234"	--zmq-collector-mode	--
zmq-encrypt-pwd	myencryptionkey	
• host	 Y>	 nprobe	 -n	 none	 --zmq	 "tcp://*:1234"	 --zmq-
probe-mode	--zmq-encrypt-pwd	myencryptionkey



Creating	ntopng	Clusters	[1/3]
• Ntopng	is	not	only	a	flow	collector,	but	it	can	export	flows	
in	the	same	JSON	format	used	in	the	received	flows.	
• This	allows	complex	clusters	to	be	created:



Creating	ntopng	Clusters	[2/3]
• In	many	companies,	there	are	many	satellite	offices	and	a	
few	central	aggregation	points.	
• Using	 ØMQ	 (both	 ntopng	 and	 nProbe	 flows	 are	 in	 the	
same	 format)	 it	 is	 possible	 to	 create	 a	 hierarchy	 of	
instances.	
• Each	node	aggregates	the	traffic 
for	the	instances	“below”	it,	so 
that	at	each	tree	layer	you	have  
a	summarised	view	of	the  
network	activities.



Creating	ntopng	Clusters	[3/3]
Example 

• Start the remote nProbe instances as follows
• [host1] nprobe --zmq “tcp://*:5556″ -i ethX 
• [host2] nprobe --zmq “tcp://*:5556″ -i ethX 
• [host3] nprobe --zmq “tcp://*:5556″ -i ethX 
• [host4] nprobe --zmq “tcp://*:5556″ -i ethX 

• If you want to merge all nProbe traffic into a single ntopng interface do:
• ntopng -i tcp://host1:5556,tcp://host2:5556,tcp://

host3:5556,tcp://host4:5556 

• If you want to keep each nProbe traffic into a separate ntopng interface do:
• ntopng -i tcp://host1:5556 -i tcp://host2:5556 -i tcp://

host3:5556 -i tcp://host4:5556

tcp://host4:5556


Managing	Alerts	[1/2]
• In	many	situations	it	is	fundamental	to	set	alerts	that	can	
signal	anomalous	conditions	

•Ntopng	handles	host/interface/network	alerts	hooked	to	
multiple	metrics	

•Metrics	include	bytes/packets	received/generated	
•User-submitted	alerts	are	continuously	monitored	 in	 the	
background



Managing	Alerts	[2/2]



Sending	ntopng	Alerts	to	Nagios	[1/2]
•Nagios	 is	 the	 de-facto	 standard	 in	 infrastructure	
monitoring	

•Ntopng	features	alert	propagation	to	Nagios



Sending	ntopng	Alerts	to	Nagios	[2/2]
•Alerts	are	sent	to	Nagios	via	NSCA	
•Nagios	will	intercept	all	alerts	that	are	explicitly	declared	
as	passive	services	

• Passive	service	description	format	is:	
•NtopngAlert_<host/network/interface>_<timespan>_<metric>



System+Network	Monitoring	[1/3]
• Historically	on	Unix	there  
are	many	tools	for	system 
monitoring.	
• Like	when	we	started	the 
development	of	ntop,	all 
these	tools	are	nice	per-se,	but	are	not	integrated 
with	the	rest	of	the	environment.	
• Ntopng/nProbe	monitor	 network	 activities,	 but	 have	 no	
visibility	 of	 the	 processes	 that	 are	 originating	 the	
observed	network	activities.



System+Network	Monitoring	[2/3]
How	most	system	management	tools	work	on	Linux:

/proclsof

 1 

 2 
 3 



System+Network	Monitoring	[3/3]
• Using	Ntopng/nProbe	you	can	see	the	flows	that	are	are	
being	exchanged	across	 systems	but	 it	 is	not	possible	 to	
know	more	than	that.

?

?

?

???

?

Flow

Host



System+Network	Monitoring	[3/3]
• It	would	be	desirable	to	know	exactly	what	is	the	process	
originating	 the	 traffic	 observed	 and	 what	 resources	 the	
process	is	using	while	generating	such	traffic.	
• In	essence	we	would	like	to	see	this	picture:



Welcome	to	Sysdig
• Sysdig	is	a	Linux 
framework	developed 
by	Draios	Inc	for 
capturing	system	calls.	
• The	kernel	module  
intercepts	the	calls.	
• The	user-space	libs 
receive	and	interpret 
the	received	calls.



Why	Sysdig?
• Contrary	 to	 all	 other	 tools	 available	 for	 system	
monitoring,	 sysdig	 implements	 the	 “packet	 paradigm”	
applied	to	system	events:	
• Events	 are	 received	 in	 a	way	 similar	 to	what	 happens	
with	packet	capture.	
• It	is	possible	to	store	events	on	pcap-like	files	and	reply	
them	later	on.	

• To	 simplify	 things,	 instead	 of	 using	 the	 sysdig	 API,	 we	
added	native	 sysdig	 support	 in	PF_RING	 so	 that	 all	 apps	
(e.g.	Ntopng)	can	use	it.



Integrating	sysdig	in	nProbe	[1/2]
• Instead	of	complicating	the	design	of	ntopng	with	sysdig	
support,	we	have	decided	to	extend	nProbe	with	system	
visibility.	
• nProbe	 monitors	 both	 the	 network	 interfaces	 and	 the	
system	events	via	PF_RING.	
• Network	 and	 system	 information	 is	 then	 combined	 and	
exported	 in	 standard	 network	 flows	 over	 NetFlow	 v9/
IPFIX	and	in	JSON	to	ntopng	for	data	visualization.



Integrating	sysdig	in	nProbe	[2/2]
• Using	sysdig,	nProbe	is	able	to	bind	a	(local)	process	to	a	
network	 flow,	 and	 to	monitor	 its	 I/O	 activities,	 CPU	 and	
memory	utilisation.	
• This	 way	 we	 know	 for	 sure	 what	 network	 activities	 are	
performed	 by	 processes,	 including	 those	 activities	
performed	by	trojans	and	malware	that	start	up,	send	the	
packet-of-death	and	then	disappear.	
• Thanks	 to	 the	 PID/father-PID	 hierarchy	 it	 is	 possible	 to	
know	an	any	time	the	exact	activation	chain.



Ntopng+nProbe+sysdig
•When	 ntopng	 receives	 flow	 enriched	 with	 system	
information,	it	interprets	it,	and	depicts:	
• The	process-to-flow	association.	
• For	flows	whose	peers	are	hosts	monitored	by	nProbe	
instances,	it	“glues”	the	flows	together.	
• The	process	call	father/process	hierarchy	is	depicted.	
• The	overall	 system	process	view	 including	 the	process	
relationships.



Process	Network	Communications



Flow/Process	Drill-down	[1/2]



Flow/Process	Drill-down	[2/2]

}

}

Dynamically Updated

Dynamically Updated

Flow-to-Process binding

Flow-to-Process binding



Active	Process	Network	Connections



Process	Network	Traffic



Process	Protocols	Drill-Down



Processes	Timeline



User	Flows	and	Processes



Historical	Flow	Navigation	[1/2]
•Ntopng	can	send	(-F)	network	flows	to	MySQL	
•A	 built-in	 database	 explorer	 retrieves	 such	 flows	 and	
allows	them	to	be	navigated	and	searched



Historical	Flow	Navigation	[2/2]

Bulk download and full 
pcap extraction options



Historical	Talkers	[1/2]
• Top	Talkers	can	be	automatically	extracted	from	flows.	

• Every	top	talker	can	be	clicked	to	inspect	its	peers.	

• Every	 peer	 can	 be	 clicked	 to	 inspect	 L7	 application	
protocols.



Historical	Talkers	[2/2]



Historical	Applications	[1/2]
• Top	 Applications	 can	 be	 automatically	 extracted	 from	
flows	as	well.	

• Every	top	application	can	be	clicked	to	inspect	hosts	that	
have	used	it.	

• Every	host	can	be	clicked	to	inspect	peers	that	have	used	
a	given	application	to	communicate	with	the	host.



Historical	Applications	[2/2]



Ntopng	and	Big	Data
• Using	SQLite	to	save	flows	persistently	is	good	when	flows	
are	 not	 too	many	 and	 the	 system	 that	 runs	 ntopng	 has	
storage.	
• For	 large	 deployments	 or	 disk-less	 systems	 (e.g.	 ARM-
based	 PCs)	 it	 is	 desirable	 to	 upload	 flows	 on	 remote,	
cloud-based,	 systems	 able	 to	 scale	 with	 the	 number	 of	
flows.	
• In	essence	ntopng	has	been	opened	to	what	 is	currently	
defined	as	“big	data”	systems	that	can	scale	with	data	in	
volume	and	speed.



Integrating	Ntopng	with	ElasticSearch	[1/2]
• An	emerging	Big	Data	system	is	ElasticSearch	that	is	used	
by	 a	 large	 community	 because	 of	 its	 flexibility	 and	 user	
interface	 (Kibana)	 that	 allow	 visual	 applications	 to	 be	
developed	in	minutes.	
• Although	we	do	not	want	to	bind	ntopng	only	with	ES,	we	
believe	that	its	integration	is	a	good	starting	point	for:	
• Opening	ntopng	to	the	Big	Data	world.	
• Allowing	people	to	use	ntopng	as	data	source	and	let	
them	use	ES	for	long-term	data	storage	and	develop	
custom	dashboards	using	Kibana.



Integrating	Ntopng	with	ElasticSearch	[2/2]
• Ntopng	 dumps	 exported	 flows	 in	 JSON	 format	 onto	 a	
Redis	 queue	 enriched	with	 some	 specified	 ES	 attributes	
(e.g.	@timestamp	 that	 specifies	 the	 time	 such	 flow	 has	
been	exported).	
• As	soon	as	there	is	a	minimum	number	of	flows	in	queue,	
a	ntopng	thread	packs	them	together	and	sends	them	to	
ES	using	the	ES	bulk	API.	
• ES	indexes	the	received	flows	and	make	them	available	to	
external	applications	such	as	the	Kibana	dashboard.



Ntopng	Process	Dashboard	in	Kibana	[1/2]



Ntopng	Process	Dashboard	in	Kibana	[2/2]
• The	GUI	refreshes	automatically  
as	new	data	arrive	and	users 
can	drill	down	data	or	visualise  
raw	flows.



What’s	Next	on	Big	Data	and	Ntopng
•We	believe	that	the	big	data	world	is	still	very	liquid	and	it	
is	not	clear	what	the	emerging	technology	will	be.	
•We	believe	ntopng	should	be	 just	a	data	source	without	
being	 tightly	 integrated	 with	 any	 external	 tool	 (ntopng	
speaks	 JSON	 and	 HTTP	 so	 we	 can	 cover	 most	 of	 them	
pretty	easily).	
•We	 are	 experimenting	 with	 other	 big	 data	 technologies	
(e.g.	druid.io)	and	we	plan	to	open	it	to	all	the	emerging	
technologies	available.



Ntopng	on	Virtual	Environments
• Ntopng	has	been	packaged	 for	major	 Linux	distributions	
such	 as	 Debian/Ubuntu,	 CentOS/RedHat	 and	 also	
FreeBSD	and	OSX	(brew):	installation	couldn’t	be	simpler.	
• However	 the	 current	 trend	 is	 going	 towards	 virtualised	
environments	 (not	 just	 VMs	 such	 as	 VMware)	 and	 IaaS	
(Infrastructure	as	a	Service)	and	thus	we	need	to	support	
them.



Embedding	Ntopng	[1/4]
•Historically	 we	 have	 started	 our	 first	 embed	 attempt	 in	
2003	with	the	Cyclades	TS100.	

• The	nBox	was	used	to	analyse	traffic	then	sent	to	ntop	for	
representation.	

•After	10	years	we	have	tried	again	with	ntopng.



Embedding	Ntopng	[2/4]
• It	 is	 a	 while	 that	 we	 are	 working	 towards	 a	 cheap	
platform	for	everyone…

BeagleBoard Black



Embedding	Ntopng	[3/4]
• Main	issue	with	boards	like	BeagleBoard/Raspberry:	only	
one	ethernet	interface	built-in	(extra	ports	via	USB).	

• Boxes	 like	 Ubiquity	 Networks	 EdgeRouter	 are	 also	 an	
option	but	we’re	basically	jeopardising	a	box	designed	for	
other	tasks	(issues	with	hardware	guarantee,	GUI	etc.).	

• Open	issues:	how	to	monitor	traffic?	Port	mirror	or	tap?



Embedding	Ntopng	[4/4]
•We’re	trying	to	find	the	third	way…	
• Rely	 on	 a	 hardware	 company	 to	 build	 a	 cheap	 ARM-
based	 box	 suitable	 for	 network	 monitoring	 (ntop	 is	
making	software	no	hardware).	
• Two	ethernet	 interfaces	 to	be	used	as	either	a	bump-
in-the-wire	or	2	x	independent	interfaces.	
• Built-in	hardware	tap	with	bypass.	
• Able	to	monitor	xDSL/cable	and	up.	
• Power-over-Ethernet	(POE).



Final	Remarks
•Over	 the	 past	 18	 years	 ntop	 created	 a	 software	
framework	for	efficiently	monitoring	traffic.	

• “We	have	a	story	to	tell	you,	not	just	hacks”.	
• Commodity	hardware,	with	adequate	software,	can	now	
match	 the	 performance	 and	 flexibility	 that	 markets	
require.	With	the	freedom	of	open	source.	

•Ntopng	is	available	under	GNU	GPLv3	from 
http://www.ntop.org/.

http://www.ntop.org


Using	Ntopng



Logging	into	ntopng



ntopng	Dashboard



Available	Menu	Items



Dynamic	Web	Interface



Flows	Monitoring	[1/2]



Flows	Monitoring	[2/2]



Host	Monitoring	[1/3]



Host	Monitoring	[2/3]



Host	Monitoring	[3/3]



Activity	Map
•1	second	resolution	host	and	aggregation	activity	
•Compressed	bitmap	

•Saved	persistently	on	disk	(Local	Hosts	only)

> ls -l client14.dropbox.com 
4 -rw-rw-rw- 1 nobody nogroup 24 Oct 11 02:31 client14.dropbox.com

http://client14.dropbox.com


Traffic	Aggregations	[1/2]
•nDPI	 extracts	 specific	 attributes	 from	 traffic	 that	 ntopng	
aggregates	(if	configured):	
•DNS/Whois	responses	
•HTTP	host	names	
•Operating	System	(from	HTTP	headers)	

•Aggregations	can	be	enabled	(they	are	off	by	default)	and	
are	handled	just	as	flows	and	hosts.



Traffic	Aggregations	[2/2]



Hosts	and	Aggregations	Interaction



Geolocation



Live	Host	Activities	



Historical	Activities
•All	relevant	counters	are	saved	on	disk	in	RRD.	
• Interface	 counters	 are	 saved	 with	 1	 second	 resolution.	
Hosts	counters	every	5	minutes.

RRD values correlated 
with top talkers

Ajax-based charts 
(no RRD graphs)



Using	Ntopng	as	a	Live	Data	Source	
•ntopng	 is	 a	 server	 able	 to	 serve	 data	 to	 third	 party	
applications	via	HTTP.	
•Data	is	exported	via	JSON.	
•This	mechanism	can	be	extended	via	Lua	scripts.



	Using	Ntopng	with	NetFlow/sFlow
•ntopng	can	handle	flows	(Net/sFlow)	via	nProbe.	

•Data	Collector	(ntopng)	
• ntopng -i tcp://127.0.0.1:5556 

•Probe	(nProbe)	
• nprobe --zmq "tcp://*:5556" -i eth1 -n none	(probe	mode)	
• nprobe --zmq "tcp://*:5556" -i none -n none --collector-port 

2055	(sFlow/NetFlow	collector	mode)



Giuseppe	Augiero	
<talk@augiero.it>	-	@GiuseppeAugiero	

Luca	Deri		
<deri@ntop.org>	-	@lucaderi

NtopNg	e	il	monitoraggio	del	
traffico	di	rete		
(in	high-speed	network)

(c)	Ntop.org	-	19	agosto	2016	-	Moca	2016	-	Pescara		-	Parco	ex	Caserma	Cocco


