# ntop Users Group Meeting

#### **nDPI**

nDPI: Open-Source High-Speed Deep Packet Inspection

Giuseppe Augiero <a href="mailto:suge-augiero@ntop.org">augiero@ntop.org</a> Slide: Luca Deri <a href="mailto:deri@ntop.org">deri@ntop.org</a>





#### Traffic Classification: an Overview

- •In the network management it is very important understand what happens on the net.
- •Uses, trends, problems, abuses and so on...

•Traffic classification is compulsory to understand the traffic flowing on a network and enhance user experience by tuning specific network parameters.



#### Classic method

•Main classification methods (classic) include:

- •TCP/UDP port classification.
- QoS based classification (DSCP).
- Statistical Classification.

•The results are not complete or may be not correct.



#### Port-based Traffic Classification

#### Port-based Classification

- •In the early day of the Internet, network traffic protocols were identified by protocol and port.
- •Can classify only application protocols operating on well known ports (no rpcbind or portmap).

•Easy to cheat and thus unreliable (TCP/80 != HTTP).



#### **DSCP-based Traffic Classification**

- QoS Markers (DSCP)
  - •Similar to port classification but based on QoS tags.
  - Usually ignored as it is easy to cheat and forge.





#### Statistical Traffic Classification

- Classification of IP packets (size, port, flags, IP addresses) and flows (duration, frequency, etc...).
- Based on rules written manually, or automatically using machine learning (ML) algorithms.
- ML requires a training set of very good quality, and it is generally computationally intensive.
- Detection rate can be as good as 95% for cases which were covered by the training set, and <u>poor accuracy for</u> all the other cases.



# We need more...



## Deep Packet Inspection (DPI)

- Technique that inspects the packet payload.
- Computationally intensive with respect to simple packet header analysis.
- Concerns about privacy and confidentiality of inspected data.
- Encryption is becoming pervasive, thus challenging DPI techniques.
- No false positives unless statistical methods or IP range/flow analysis are used by DPI tools.



### Using DPI in Traffic Monitoring

- Packet header analysis is no longer enough as it is unreliable and thus useless.
- Security and network administrators want to know what are the real protocols flowing on a network, this regardless of the port being used.
- Selective metadata extraction (e.g. HTTP URL or User-Agent) is necessary to perform accurate monitoring and thus this task should be performed by the DPI toolkit without replicating it on monitoring applications.



#### Why (n)DPI?

- •There are many commercial DPI libraries: NDA-based, expensive (both in price and maintenance), closed source (you need to trust manufactures), non-extensible by end-users (vendor lock-in).
- Alternatives: Linux layer-7 filter (obsolete), Libprotoident (good but limited to 4 bytes analysis thus not extracting any metadata).

In essence we need a opensource (n)DPI system.



#### Welcome to nDPI

- We decided to develop our own GNU GPL DPI toolkit (based on a unmaintained project named OpenDPI) in order to build an open DPI layer for ntop and third-party applications.
- Protocols supported exceed 170 and include:
  - •P2P (Skype, BitTorrent)
  - Messaging (Viber, Whatsapp, MSN, The Facebook)
  - •Multimedia (YouTube, Last.gm, iTunes)
  - Conferencing (Webex, CitrixOnLine)
  - Streaming (Zattoo, Icecast, Shoutcast, Netflix)
  - Business (VNC, RDP, Citrix, \*SQL)





#### nDPI vs OpenDPI [1/2]

- Code has been changed to be really end-user extensible by coding a new protocol dissector.
- Various code sections have been rewritten to make them reentrant (multithread).
- Major performance improvements, and introduction of "hints" (e.g. for traffic on TCP/80 try the HTTP dissector first).
- Added support for SSL certificate decoding, used for detecting specific communications (e.g. classify encrypted Apple traffic: iTunes vs. FaceTime).



#### nDPI vs OpenDPI [2/2]

- •Introduction of substring-matching for searching specific words on strings. For instance users can configure at runtime rule where for HTTP traffic matching host names \*google.com should be considered as Google (protocol) traffic.
- Extraction of metadata such as HTTP URL, DNS queried hostnames to be used by user-space applications.
- •Port to non-x86 platforms and embedded platforms.



#### nDPI Internals

- The library engine is responsible for maintaining flow state (no DPI is performed).
- Based on flow protocol/port all dissector that can potentially match the flow are applied sequentially starting from the one that most likely match.
- Each dissector is coded into a different .c file for the sake of modularity and extensibility.
- There is an extra .c file for IP matching (e.g. identify spotify traffic based on Spotify AS).



### Traffic Classification Lifecycle

- nDPI divides the traffic in 5-tuple flows.
- •Based on traffic type (e.g. UDP traffic) dissectors are applied sequentially starting with the one that will most likely match the flow.
- Each flow maintains the state for non-matching dissectors in order to skip them in future iterations.
- Analysis lasts until a match is found or after too many attempts (8 packets is the upper-bound in our experience).



### Evaluating nDPI [1/2]

- nDPI has been evaluated both in terms of accuracy and performance.
- "The best accuracy we obtained from nDPI (91 points), PACE (82 points), UPC MLA (79 points), and Libprotoident (78 points)"\*
- Issues on nDPI are mostly due to dissectors that conservative and thus prefer report a flow as unknown rather than misclassify it.

\*T. Bujlow, V. Carela-Español, P. Barlet-Ros, Comparison of Deep Packet Inspection (DPI) Tools for Traffic Classification, Technical Report, June 2013.



## Evaluating nDPI [2/2]

| Protocol                    | Flows   | % correct | % wrong | % uncl. |           |
|-----------------------------|---------|-----------|---------|---------|-----------|
| DNS                         | 18 251  | 100.00    | 0.00    | 0.00    |           |
| HTTP                        | 42983   | 97.80     | 0.66    | 1.54    |           |
| ICMP                        | 205     | 100.00    | 0.00    | 0.00    |           |
| IMAP (Start-TLS)            | 35      | 100.00    | 0.00    | 0.00    |           |
| IMAP (TLS)                  | 103     | 100.00    | 0.00    | 0.00    |           |
| NETBIOS (Name Service)      | 10 199  | 99.97     | 0.00    | 0.03    |           |
| NETBIOS (Session Service)   | 11      | 100.00    | 0.00    | 0.00    |           |
| Samba Service               | 42 808  | 100.00    | 0.00    | 0.00    |           |
| NTP                         | 42 227  | 100.00    | 0.00    | 0.00    |           |
| POP3 (plain mode)           | 26      | 100.00    | 0.00    | 0.00    |           |
| POP3 (TLS)                  | 101     | 100.00    | 0.00    | 0.00    |           |
| RTMP                        | 378     | 70.90     | 15.87   | 13.23   |           |
| SMTP (plain mode)           | 67      | 100.00    | 0.00    | 0.00    |           |
| SMTP (TLS)                  | 52      | 100.00    | 0.00    | 0.00    |           |
| SOCKSv5                     | 1927    | 92.99     | 0.00    | 7.01    |           |
| SSH                         | 38 961  | 93.98     | 0.80    | 5.22    | Bug Fixed |
| BitTorrent (encrypted mode) | 96399   | 54.41     | 0.18    | 45.41   |           |
| BitTorrent (mixed mode)     | 261 527 | 99.41     | 0.02    | 0.57    |           |
| DropBox                     | 93      | 98.92     | 0.00    | 1.08    |           |



#### nDPI Performance

```
# taskset -c 1 ./pcapReader -i ~/test.pcap
Using nDPI (r7253)
pcap file contains
IP packets: 3000543 of 3295278 packets
IP bytes:1043493248(avg pkt size 316 bytes)
Unique flows: 500
nDPI throughput: 3.42 M pps / 8.85 Gb/sec
```

 With two cores it is possible to analyse a full 10 Gbit link on a Intel i7-860 both using traffic traces or capturing live on top of PF\_RING (home-grown packet processing framework).



#### nDPI In Real Life

•nDPI is used by several projects on the Internet including:

Network Forensics (Xplico).

 Linux-kernel packet filtering (ndpi-netfilter).

Ntopng.







#### Final Remarks

- We have presented nDPI an open source DPI toolkit able to detect many popular Internet protocols and scale at 10 Gbit on commodity hardware platforms.
- Its open design make it suitable for using it both in open-source and security applications where code inspection is compulsory.
- Code Availability (GNU LGPLv3)
   https://svn.ntop.org/svn/ntop/trunk/nDPI/



# ntop Users Group Meeting

#### **nDPI**

nDPI: Open-Source High-Speed Deep Packet Inspection

Giuseppe Augiero <a href="mailto:suge-augiero@ntop.org">augiero@ntop.org</a> Slide: Luca Deri <a href="mailto:deri@ntop.org">deri@ntop.org</a>



